Search results for " Protein Transport"

showing 9 items of 9 documents

Distinct lytic vacuolar compartments are embedded inside the protein storage vacuole of dry and germinating Arabidopsis thaliana seeds.

2011

International audience; Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification. Our results confirm the existence of a lytic compartment embedded in the protein storage vacuole of dry seeds, decorated by γ-TIP, the vacuolar proton pumping pyrophospha…

0106 biological sciencesPhysiologyProtein storage vacuoleProton-pumping pyrophosphataseArabidopsisPlant ScienceVacuoleUNIQUEMESH: Protein Isoforms01 natural sciencesPYROPHOSPHATASEArabidopsisProtein IsoformsMESH: ArabidopsisH+-ATPASETONOPLAST INTRINSIC PROTEINPLANT-CELLSCation Transport ProteinsIN-VIVOPlant Proteinschemistry.chemical_classification0303 health sciencesMESH: Plant ProteinsGeneral MedicineCell biologyProtein TransportVacuolar acidificationLytic cycleSeedsPREVACUOLAR COMPARTMENTMESH: DesiccationVacuolar Proton-Translocating ATPasesMESH: Protein TransportMESH: Vacuolar Proton-Translocating ATPasesGerminationMESH: Arabidopsis ProteinsMESH: GerminationBiologyAquaporinsMESH: Vacuoles03 medical and health sciencesMESH: AquaporinsMESH: Cation Transport ProteinsStorage protein[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyLytic vacuoleDesiccation030304 developmental biologySeedArabidopsis ProteinsCell Biologybiology.organism_classificationTRANSPORTchemistryMESH: SeedsVacuolesVacuoleMEMBRANEMOBILIZATION010606 plant biology & botany
researchProduct

CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells

2004

We investigated the membrane localization of CD95 in type I and type II cells, which differ in their ability to recruit and activate caspase-8. We found that CD95 was preferentially located in lipid rafts of type I cells, while it was present both in raft and non-raft plasma membrane sub-domains of type II cells. After stimulation, CD95 located in phospholipid-rich plasma membrane was recruited to lipid rafts in both types of cells. Similarly, CD95 cross-linking resulted in caspase-independent translocation of FADD/MORT1 and caspase-8 to the lipid rafts, which was prevented by a death domain-defective receptor. CD95 internalization was then rapid in type I and delayed in type II cells and s…

Death Domain Receptor Signaling Adaptor ProteinsEndosomeT-Lymphocytesmedia_common.quotation_subjectImmunologyApoptosisReceptors Tumor Necrosis FactorCell LineMembrane MicrodomainsSettore MED/04 - PATOLOGIA GENERALECell Line TumorReceptorsHumansImmunology and Allergyfas ReceptorFADDInternalizationLipid raftLipid raftsDeath domainmedia_commonTumorbiologyVesicleFas receptorEndocytosisCell biologyProtein TransportCholesterolCD95 death-inducing signaling complexCaspasesCD95biology.proteinlipids (amino acids peptides and proteins)biological phenomena cell phenomena and immunityCaspase-8Tumor Necrosis FactorCaspase-8; CD95; Lipid rafts; Apoptosis; Caspases; Cell Line Tumor; Cholesterol; Death Domain Receptor Signaling Adaptor Proteins; Humans; Membrane Microdomains; Protein Binding; Protein Transport; Receptors Tumor Necrosis Factor; T-Lymphocytes; fas Receptor; Endocytosis; Signal Transduction; Immunology and Allergy; ImmunologyProtein BindingSignal TransductionEuropean Journal of Immunology
researchProduct

S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells.

2011

International audience; BACKGROUND & AIMS: Fas belongs to the family of tumor necrosis factor receptors which induce apoptosis. Many cancer cells express Fas but do not undergo Fas-mediated apoptosis. Nitric oxide reverses this resistance by increasing levels of Fas at the plasma membrane. We studied the mechanisms by which NO affects Fas function. METHODS: Colon and mammary cancer cell lines were incubated with the NO donor glyceryl trinitrate or lipid A; S-nitrosylation of Fas was monitored using the biotin switch assay. Fas constructs that contained mutations at cysteine residues that prevent S-nitrosylation were used to investigate the involvement of S-nitrosylation in Fas-mediated cell…

MESH: NitroglycerinMESH: Signal TransductionTime FactorsMESH: Membrane MicrodomainsApoptosisMESH : Fas Ligand ProteinCytoplasmic partMESH: Lipid AFas ligandMiceNitroglycerin0302 clinical medicineMESH : Protein TransportMESH : FemaleMESH: AnimalsFADDLipid raft0303 health sciencesTumorbiologyColon CancerMESH : Lipid AMESH : BiotinylationGastroenterologyFas receptorMESH: Antigens CD95Protein TransportLipid AMESH : Colonic NeoplasmsMESH : Nitric OxideMESH : Nitric Oxide Donors030220 oncology & carcinogenesisColonic NeoplasmsDeath-inducing signaling complexFemale[ SDV.MHEP.HEG ] Life Sciences [q-bio]/Human health and pathology/Hépatology and GastroenterologyMESH : MutationMESH : TransfectionSignal TransductionMESH : Time FactorsMESH: Protein TransportFas Ligand ProteinMESH : Mammary Neoplasms ExperimentalMESH: MutationMESH: Cell Line TumorMESH: Mammary Neoplasms ExperimentalNitric OxideTransfectionCaspase 803 medical and health sciencesMembrane MicrodomainsCell Line TumorMESH : MiceAnimalsHumansBiotinylationNitric Oxide DonorsMESH: BiotinylationCysteinefas ReceptorMESH: MiceMESH : Protein Processing Post-Translational030304 developmental biologyMESH : Signal TransductionMESH: Colonic NeoplasmsMESH : CysteineMESH: HumansHepatologyMESH : Cell Line TumorMESH: ApoptosisMESH: TransfectionMESH : HumansMESH: Time FactorsMammary Neoplasms Experimental[SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and GastroenterologyMESH: CysteineMESH: Nitric Oxide DonorsMolecular biologySignalingMESH: Fas Ligand ProteinMESH : NitroglycerinApoptosisLocalizationMESH: Nitric OxideMESH: Protein Processing Post-TranslationalMutationbiology.proteinMESH : Membrane MicrodomainsMESH : AnimalsMESH : Antigens CD95Protein Processing Post-TranslationalMESH: FemaleMESH : Apoptosis
researchProduct

Expression and differential localization of xenobiotic transporters in the rat olfactory neuro-epithelium.

2011

International audience; Transporters, such as multidrug resistance P-glycoproteins (MDR), multidrug resistance-related proteins (MRP) and organic anion transporters (OATs), are involved in xenobiotic metabolism, particularly the cellular uptake or efflux of xenobiotics (and endobiotics) or their metabolites. The olfactory epithelium is exposed to both inhaled xenobiotics and those coming from systemic circulation. This tissue has been described as a pathway for xenobiotics to the brain via olfactory perineural space. Thereby, olfactory transporters and xenobiotic metabolizing enzymes, dedicated to the inactivation and the elimination of xenobiotics, have been involved in the toxicological p…

Male[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionMESH : Multidrug Resistance-Associated Proteinsp glycoproteinATP-binding cassette transporterMESH : HepatocytesReceptors OdorantMESH : P-GlycoproteinMESH: HepatocytesMESH : Lymphatic Vessels0302 clinical medicineMESH : Protein Transportugt2a1MESH: SmellMESH: Receptors OdorantMESH: AnimalsReceptorxenobiotic metabolizingmucosa0303 health sciencesMESH : Gene Expression RegulationMESH : RatsGeneral NeuroscienceMESH : OdorsMESH: Gene Expression RegulationSmellProtein Transportmedicine.anatomical_structureBiochemistryLivertransporterbarrierEffluxMultidrug Resistance-Associated ProteinsMESH: Multidrug Resistance-Associated ProteinsMESH: XenobioticsMESH: Protein TransportMESH: P-GlycoproteinMESH: RatsMESH: Lymphatic VesselsMESH : Maleodorant clearancebrainMESH : XenobioticsxenobioticBiologysystemMESH : Rats WistarOlfactory Receptor NeuronsXenobiotics03 medical and health sciencesbulbOlfactory Mucosamultidrug resistanceMESH : Receptors OdorantmedicineAnimalsATP Binding Cassette Transporter Subfamily B Member 1Rats WistardetoxificationMESH: Olfactory Mucosa030304 developmental biologyLymphatic VesselsMESH : Olfactory MucosaMESH: OdorsMESH : LiverTransporterMESH: Rats WistarMESH: Olfactory Receptor NeuronsEpitheliumMESH: MaleOlfactory bulbRatsenzymeGene Expression RegulationOdorantsHepatocytesMESH : SmellMESH : Olfactory Receptor NeuronsMESH : Animalsolfactory epitheliumOlfactory epitheliumperireceptor event[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgeryDrug metabolismMESH: Liver
researchProduct

Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity

2009

Heat shock protein 27 (HSP27) accumulates in stressed cells and helps them to survive adverse conditions. We have already shown that HSP27 has a function in the ubiquitination process that is modulated by its oligomerization/phosphorylation status. Here, we show that HSP27 is also involved in protein sumoylation, a ubiquitination-related process. HSP27 increases the number of cell proteins modified by small ubiquitin-like modifier (SUMO)-2/3 but this effect shows some selectivity as it neither affects all proteins nor concerns SUMO-1. Moreover, no such alteration in SUMO-2/3 conjugation is achievable by another HSP, such as HSP70. Heat shock factor 1 (HSF1), a transcription factor responsib…

Protein sumoylationTranscriptional ActivationCancer Researchendocrine systemanimal structuresSUMO proteinHSP27 Heat-Shock ProteinsBiologyurologic and male genital diseasesenvironment and public healthSubstrate Specificity03 medical and health sciencesTransactivation0302 clinical medicineHeat Shock Transcription FactorsHeat shock proteinGeneticsAnimalsHumansAnimals Cell Nucleus/metabolism DNA-Binding Proteins/*metabolism HSP27 Heat-Shock Proteins/chemistry/*metabolism Hela Cells Humans Protein Multimerization Protein Structure[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyHSF1Protein Structure QuaternaryMolecular BiologyTranscription factorUbiquitinsHeat-Shock Proteins030304 developmental biologyCell Nucleus0303 health sciencesMolecular biologyHsp70Cell biologyHeat shock factorDNA-Binding ProteinsProtein TransportQuaternary Protein Transport Small Ubiquitin-Related Modifier Proteins/*metabolism Substrate Specificity Transcription Factors/*metabolism Transcriptional Activation Ubiquitins/*metabolism030220 oncology & carcinogenesisembryonic structuresSmall Ubiquitin-Related Modifier ProteinsProtein MultimerizationHeLa CellsMolecular ChaperonesTranscription Factors
researchProduct

Reconstitution of vesicular transport to Rab11-positive recycling endosomes in vitro.

2003

Rab GTPases are key regulators of vesicular protein transport in both the endocytic and exocytic pathways. In endocytosis and recycling, Rab11 plays a role in receptor recycling to plasma membrane via the pericentriolar recycling compartment. However, little is known about the molecular requirements and partners that promote transport through Rab11-positive recycling endosomes. Here, we report a novel approach to reconstitute transport to immunoabsorbed recycling endosomes in vitro. We show that transport is temperature-, energy-, and time-dependent and requires the presence of Rab proteins, as it is inhibited by the Rab-interacting protein Rab GDP-dissociation inhibitor that removes Rab pr…

Receptor recyclingCytochalasin DEndosomeEndocytic cycleBiophysicsVesicular Transport ProteinsCHO CellsEndosomesEndocytosisBiochemistryCricetulusCricetinaeReceptors TransferrinAnimalsVesicular Protein TransportTransport VesiclesMolecular BiologyGuanine Nucleotide Dissociation InhibitorsChemistryCell BiologyActin cytoskeletonAdaptation PhysiologicalCell biologyVesicular transport proteinProtein Transportrab GTP-Binding ProteinsRabBiochemical and biophysical research communications
researchProduct

IRSp53 controls plasma membrane shape and polarized transport at the nascent lumen in epithelial tubules.

2020

It is unclear whether the establishment of apical–basal cell polarity during the generation of epithelial lumens requires molecules acting at the plasma membrane/actin interface. Here, we show that the I-BAR-containing IRSp53 protein controls lumen formation and the positioning of the polarity determinants aPKC and podocalyxin. Molecularly, IRSp53 acts by regulating the localization and activity of the small GTPase RAB35, and by interacting with the actin capping protein EPS8. Using correlative light and electron microscopy, we further show that IRSp53 ensures the shape and continuity of the opposing plasma membrane of two daughter cells, leading to the formation of a single apical lumen. G…

ScienceSialoglycoproteinsQCell MembraneCell PolarityEpithelial CellsNerve Tissue ProteinsApicobasal polaritySettore MED/08 - Anatomia PatologicaActins Cell Membrane Cell Polarity Epithelial Cells Female Morphogenesis Nerve Tissue Proteins Protein Transport Sialoglycoproteins rab GTP-Binding ProteinsActinsArticleProtein Transportrab GTP-Binding ProteinsMorphogenesisHumanslcsh:QFemalelcsh:ScienceNature communications
researchProduct

Annotation of microsporidian genomes using transcriptional signals

2012

EA GenoSol CT3; International audience; High-quality annotation of microsporidian genomes is essential for understanding the biological processes that govern the development of these parasites. Here we present an improved structural annotation method using transcriptional DNA signals. We apply this method to re-annotate four previously annotated genomes, which allow us to detect annotation errors and identify a significant number of unpredicted genes. We then annotate the newly sequenced genome of Anncaliia algerae. A comparative genomic analysis of A. algerae permits the identification of not only microsporidian core genes, but also potentially highly expressed genes encoding membrane-asso…

Transcription Geneticgenome annotationMESH : Molecular Sequence AnnotationGeneral Physics and AstronomyMESH: PhosphotransferasesGenometranscriptional signalMESH : Protein TransportMESH : Fungal ProteinsDNA FungalConserved SequenceComputingMilieux_MISCELLANEOUSGenetics0303 health sciencesFungal proteinMESH: Conserved SequenceMultidisciplinaryMESH: Genomics030302 biochemistry & molecular biologyGenomicsGenome projectProtein TransportMolecular Sequence Annotation[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]MESH: Genome FungalMESH: Fungal ProteinsMESH : PhosphotransferasesGenome FungalTransposable elementMESH: Protein TransportGenes FungalGenomicsMESH: Molecular Sequence AnnotationMESH : MicrosporidiaMESH : Open Reading FramesComputational biologyBiologyGeneral Biochemistry Genetics and Molecular BiologyFungal ProteinsOpen Reading Frames03 medical and health sciencesMESH : Conserved Sequence[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Anncaliia algeraeparasitic diseasesGene030304 developmental biologybioinformaticMESH: Transcription GeneticMESH : Genome FungalPhosphotransferasesstructural annotationMESH : GenomicsfungiMESH : Transcription GeneticMolecular Sequence AnnotationGeneral ChemistryMESH: Open Reading FramesMESH: MicrosporidiaMESH: DNA FungalmicrosporidiaMESH : Genes Fungal[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]MESH : DNA FungalMESH: Genes FungalNature Communications
researchProduct

The increase in maternal expression of axin1 and axin2 contribute to the zebrafish mutant ichabod ventralized phenotype.

2014

β-Catenin is a central effector of the Wnt pathway and one of the players in Ca(+)-dependent cell-cell adhesion. While many wnts are present and expressed in vertebrates, only one β-catenin exists in the majority of the organisms. One intriguing exception is zebrafish that carries two genes for β-catenin. The maternal recessive mutation ichabod presents very low levels of β-catenin2 that in turn affects dorsal axis formation, suggesting that β-catenin1 is incapable to compensate for β-catenin2 loss and raising the question of whether these two β-catenins may have differential roles during early axis specification. Here we identify a specific antibody that can discriminate selectively for β-…

axin1axin2zebrafish mutant ichabodMessengerEmbryonic DevelopmentBiochemistryBETA-CATENINAxin2-RGS DOMAINAxin ProteinAntibody SpecificitySettore BIO/10 - BiochimicaAnimalsAxin2-RGS DOMAIN; AXIS FORMATION; BETA-CATENIN; Wnt signaling; ZEBRAFISH; Animals; Antibody Specificity; Axin Protein; Blastula; Cell Nucleus; Embryonic Development; Female; Gene Expression Regulation Developmental; Genes Dominant; Immunohistochemistry; Lithium Chloride; Mutation; Phenotype; Protein Stability; Protein Transport; RNA Messenger; Signal Transduction; Up-Regulation; Zebrafish; Zebrafish Proteins; beta Catenin; Biochemistry; Cell Biology; Molecular BiologyDevelopmentalDominantRNA MessengerMolecular BiologyZebrafishbeta CateninGenes DominantAXIS FORMATIONCell NucleusProtein StabilityGene Expression Regulation DevelopmentalCell BiologyBlastulaZebrafish ProteinsWnt signalingImmunohistochemistryUp-RegulationProtein TransportPhenotypeGene Expression RegulationGenesMutationRNAFemaleLithium ChlorideSignal Transduction
researchProduct